

ACADEMY OF SCIENTIFIC AND INNOVATIVE RESEARCH

SYLLABUS

OF

INTER-DISCIPLINARY / CROSS-DISCIPLINARY COURSES

FOR

PhD PROGRAM

(A part of the August 2020 Revised Course Structure)

Academy of Scientific and Innovative Research CSIR-HRDC Campus, Sector-19, Ghaziabad, U.P., India

Revision of course curriculum from several perspectives (including updation to state of art knowledge & others) is a dynamic process restructuring for the contemporary needs and expectations w.r.t. courses of study for an academic program. This dynamic process is driven by growing needs and contemporary advancements in respective fields.

Academy of scientific & Innovative Research (AcSIR) aims to train and create quality human resource with positive attitude towards learning, leading to specialization in Ph.D. curricular education. An endeavour to revise the AcSIR Ph.D. study course syllabus has been done basically to provide opportunities to extend as well as deepen their knowledge, understanding, develop competencies & skills. It also emphasizes in the structure of teaching, learning and course duration so that it is optimum to earliest entry of students to their lab research phase of the program.

The academic programme in each of the five faculties in which AcSIR offers Ph.D. degrees is administered by a Board of Studies (BoS). The core courses have syllabithat are designed by the faculties in those areas, who have pursued research and taught these courses. Besides this, in order to get the most out of the expertise of the faculty members and their research experience in learning by students, some flexibility is given to the instructors in each course so that they can introduce a few special topics of their choice, given to the instructors in each course are normally given by the faculty members in their own area making the course unique. Advanced courses are normally given by the faculty members in their own area of expertise. Each AcSIR Academic Centre has its area of specialization and expertise.

General Objectives of the course is that after successfully going through it, students will be able to understand the methods and techniques, developing knowledge and competencies, to be helpful in their research plans ahead in his/her selected field of research. Also, to support the students to understand the nature of problems faced during the Ph.D. period, develop suitable interdisciplinary scientific methods through some innovative remedies and learn to solve them.

Identical titles with identical contents listed across the faculty of Studies were pruned and only one is listed under the most relevant faculty with course serial no.

Course Requirements For Completion of PhD Program

Minimum credits required to be successfully completed: 18 credits

Distribution of the 18 credits:

- Course 1: Total credits: 6 (consisting of two courses as under)
 - Research Methodology: 4 credits
 - Research Publication and Ethics: 2 credits
- Course 2: Total credits: 2 (consisting of one or two courses)
 - Inter-disciplinary/ Cross-disciplinary Course: 2 credits (either two courses of 1 credit each OR one course of 2 credits, to be opted from the list of offered courses)
- Course 3: Total credits: 6 (consisting of two or three courses)
 - Advanced Course: 6 credits (either two courses of 3 credit each OR three courses of 2 credits each, to be opted from the list of offered courses within Institute; restrictions of exclusion may apply when opted across Institutes)
- Course 4: Total credits: 4
 - Societal Program: Problem Understanding and Analysis: 4 credits (Group activity of upto five Team members from within Institute or across Institutes), no restriction of Faculty of Study, discipline of an AcSIR student.

How to read Course Codes:

Every Inter-disciplinary / Cross-disciplinary Course in AcSIR has a unique course code. A code can be understood as under:

AcSIR- 01- XX- 001

Two numbers identify AcSIR centres code:

Code	Lab Name
	CBRI, Roorkee
	IGIR, New Delhi
	CCMB, Hyderabad
	CDRI, Lucknow
	CECRI, Karaikudi
	CEERI, Pilani
8	CFTRI, Mysuru
9	CGCRI, Kolkata
10	CIMAP, Lucknow
11	CLRI, Chennai
	CMERI, Durgapur
14	CRRI, New Delhi
15	CSIO, Chandigarh
16	CSMCRI, Bhavnagar
17	IICB, Kolkata
	IICT, Hyderabad
19	IIP, Dehradun
20	IMTECH, Chandigarh
22	IITR, Lucknow
24	NAL, Bengaluru
	NBRI, Lucknow
26	NCL, Pune
27	NEERI, Nagpur
28	NGRI, Hyderabad
	NIO, Goa
30	NISTADS, New Delhi
31	NML, Jamshedpur
32	NPL, New Delhi
	B IHBT, Palampur
35	AMPRI, Bhopal
	MMT, Bhubaneswar
	7 IIIM, Jammu
38	NEIST, Jorhat
39	9 NIIST, Trivendrum
	1 SERC, Chennai
	2 NISCAIR, New Delhi
4:	3 CIMFR, Dhanbad
	4 URDIP, Pune
	5 4PI, Bengaluru
	1 PHFI-IIPH-Delhi
	2 PHFI-IIPH-Hyderabad
	3 LVPEI, Hyderabad
6	4 BSIP, Lucknow
	5 NIMR, New Delhi
6	6 IASST, Guwahati

A serial number for course to distinguish

Two letter shows course type i.e. XX can be:

RM: for Research Methodology

RP: for Research Publication and

Ethics

ID: for Interdisciplinary/ crossdisciplinary Learning

AD: for Advanced

SP: for Societal Program

Inter-disciplinary / Cross-disciplinary Courses and Syllabus

Course contents

S.no	AcSIR Centre	Name of the Centre	No. Courses	Page .no
	Code 01	CSIR-CBRI	08	1
1.	02	CSIR-IGIB	08	10
2.		CSIR-CCMB	05	19
3.	03	CSIR-CDRI	07	25
4.	04	CSIR-CECRI	02	33
5.	05		07	36
6.	06	CSIR-CEERI	13	44
7.	08	CSIR-CFTRI	07	58
8.	09	CSIR-CGCRI	16	66
9.	10	CSIR-CIMAP	12	84
10.	11	CSIR-CLRI	11	98
11.	12	CSIR-CMERI	08	110
12.	14	CSIR-CRRI	07	119
13.	15	CSIR-CSIO	14	127
14.	16	CSIR-CSMCRI	06	142
15.	17	CSIR-IICB	25	149
16.	18	CSIR-IICT	03	176
17.	19	CSIR-IIP		180
18.	20	CSIR-IMTECH	14	195
19.	22	CSIR-IITR	05	201
20.	24	CSIR-NAL	07	201
21.	25	CSIR-NBRI	07	
22.	26	CSIR-NCL	13	217
23.	27	CSIR-NEERI	17	231
24.	28	CSIR-NGRI	01	250
25.	29	CSIR-NIO	01	252
26.	30	CSIR-NISTADS	02	254
27.	31	CSIR-NML	07	25
28.	32	CSIR-NPL	07	26
29.	33	CSIR-IHBT	10	27
30.	35	CSIR-AMPRI	10	28
31.	36	CSIR-IMMT	22	29

22	37	CSIR-IIIM	06	319
32.		CSIR-NEIST	29	326
33.	38		08	357
34.	39	CSIR-NIIST	07	366
35.	41	CSIR-SERC		374
36.	42	CSIR-NISCAIR	07	
37.	43	CSIR-CIMFR	11	382
38.	44	CSIR-URDIP	07	394
39.	45	CSIR-4PI	07	402
	64	DST-BSIP	07	410
40.	66	DST-IASST	02	418
41.	00	ולכאו־ומט		

		BERGS.	
	e C	0	C

Course Title

AcSIR-32-ID-001	Electromagnetic Wave Characterization for Physicist and Biologist
AcSIR-32-ID-002	Electromagnetic Waves Characterizations for Physicist and Biologist
AcSIR-32-ID-003	Engineering Materials
AcSIR-32-ID-004	Environmental Chemistry & Metrology
AcSIR-32-ID-005	Materials Metrology
AcSIR-32-ID-006	Metrology in Chemistry
AcSIR-32-ID-007	Microwave Metrology

AcSIR Academic Centre Code: 32

CSIR-National Physical Laboratory

CSIR-NPL

Course	2 : Inter-disciplinary	/ Cross-disciplinary
--------	------------------------	----------------------

Total Credits 2

Electromagnetic Wave Characterization for	Course Code	Credits
Title: Physicist and Biologist	AcSIR-32-ID-001	1

Advanced electromagnetism: Electric and magnetic fields in vacuum and matter, Maxwell's equations, Electromagnetic waves in dielectric media & conducting media, Sources of electromagnetic radiation, Electromagnetic shielding.

Scattering Parameters and their applications: Analysis of two ports and multiports network by using transmission matrix and S-parameters, S-parameter analysis of the microwave circuits.

Industrial application of microwaves: Microwaves in biomedical applications especially in hyperthermia, Microwaves based localized heating, S-parameters based EM material Characterizations.

AcSIR Academic Centre Code: 32

CSIR-National Physical Laboratory

CSIR-NPL

Course	2 : Inter-disciplinary / Cross-disciplinary	Total Credit
Course	2 . Inter-disciplinary / Cross-disciplinary	

Engineering Materials	Course Code	Credits
Engineering Materials Fitle:	AcSIR-32-ID-003	1

Classification of engineering materials, material properties, selection of material, advanced and futuristic materials, smart materials, nanomaterials; phase diagram, equilibrium & kinetics, stable & metastable phases, nucleation and growth, metals.

alloys and solid-solutions; ceramics, polymers, composites; crystal imperfections, defects, dislocations; elastic and plastic deformation, stress-strain curves, work hardening & dynamic recovery, strengthening mechanisms; solidification and crystallization, recovery, recrystallization and grain growth; creep, fatigue, fracture, oxidation and corrosion; materials processing techniques: liquid metallurgy, powder metallurgy, spray forming; secondary processing techniques: extrusion, forging, rolling; mechanical and metallurgical characterization, structureproperty correlations; lightweight materials, metal matrix composites, polymer matrix composites, ceramic matrix composites, carbon-based composites, nanocomposites, super-hard materials,

dielectric, ferroelectric and piezoelectric materials, magnetic materials.

AcSIR Academic Centre Code: 32

CSIR-National Physical Laboratory

CSIR-NPL

10 - inlinema	Total Credits 2
Course 2 : Inter-disciplinary / Cross-disciplinary	

Microwave Metrology	Course Code	Credits
itle:	AcSIR-32-ID-007	1

Introduction to Primary standards in

Microwave Measurement : I. Micro-calorimeter, WBCO, Air Lines, GTEM, SAR measurement system, Uncertainty evaluation associated in microwave measurement, Review of antenna theory, Different Types of Antenna: dipoles, monopole and loop, antennas, linear and planar arrays, helical antennas, microstrip antennas and arrays Antennas.

AcSIR .	Acaden	nic Centr	e Code: :	37

CSIR-NPL

Course 2 : Inter-disciplinary / Cross-disciplinary
--

Total Credits 2

Title:	Environmental Chemistry & Metrology	Course Code	Credits
		AcSIR-32-ID-004	2

Basics of air, water and soil pollution, Sources and impact of air pollution, Transport of air pollutants, Analytical chromatographic technique (GC) and its application in Environmental Chemistry, Quality assurance/Quality Control, Concept of qualitative and quantitative analysis of atmospheric aerosols samples, Trace gases/Green House Gases (GHGs), Measurements of trace gases/GHGs using online gas analyzers. Primary Ozone standard, Estimation of uncertainty in calibration of ozone analyzer.

CSIR-NPL

Ca	urco	2	· Intor-disci	nlinary	/ Cross-disci	nlinary
CO	urse		: inter-aisci	piinary	/ Cross-disci	piinary

Total Credits 2

Title: Materials Metrology	Course Code	Credits
	AcSIR-32-ID-005	2

Basics of Metrology. Introduction to Reference materials includes preparation of | reference material, homogeneity test. stability assessment. traceability,

uncertainty estimation. Introduction to ISO 1 7025. Scope and content of ISO 1 7025, (I) Management requirements (2) Technical requirements,

Test and calibration methods validation. Equipment, Measurement traceability,

Sampling, Assuring quality of test results, Reporting the results. Versailles Project on Advanced Materials and Standards (VAMAS). structure and its objectives, technical working areas, inter lab comparisons, forming of new technical areas, development of new methods and standards. Testing of materials.

CSIR-NPL

Course 2 : Inter-disciplinary / Cross-disciplinary

Total Credits 2

Title:	Metrology in Chemistry	Course Code	Credits
		AcSIR-32-ID-006	2

Basics of measurement in chemistry (MiC); Role of Standards, Reference Materials (R.Ms), Certified reference materials (CRMs), Secondary reference materials (SRMs), Working reference materials (WRMs), Importance of Bharatiya Nirdeshak Dravyas (BNDs). Method validation and quality control emphasized to Analytical procedures,

Control Charts, Inter laboratory comparisons (ILCs), Traceability in Chemical measurement, Uncertainty measurements for chemical parameters.

Development of BND related to Chemical Parameters in accordance with ISO 17034:2016. Basic principle of sophisticate instrument viz. AAS, ICPOES, HR-ICPMS and IC. Practical training on sample preparation gravimetrically and determination of analytes / measurand by AAS, ICP-OES, IC.

CSIR-NPL

: Inter-disciplinary / Cross-disciplinary	narv	Cross-disci	olinary	er-disci	2 : Int	ourse 2
---	------	-------------	---------	----------	---------	---------

Total Credits 2

Tit	Materials Processing and Characterization	Course Code	Credits
		AcSIR-32-ID-008	1

Introduction to materials processing techniques, Polymer Processing, Metal Processing, Ceramic Processing, Composites Processing (Metal, Ceramic, Polymer matrix, Carbon-Carbon Composites), Nanomaterials and Nanocomposite Processing. Polymer processing includes, Injection moulding, compression moulding, transfer moulding, blow moulding, film blowing and extrusion. Fiber reinforced composites processing includes filament binding, hand layup, pultrusion. Metal and Ceramic composites processing includes powder Metallurgy, arc melting, melt spinning, spark plasma sintering, hot pressing. Materials Testing, Mechanical Properties such as Tensile, Compression, Bending. Impact, Thermal Shock Resistance, Hardness, Toughness, Ductile to brittle transition. Mechanical behavior of polymers. Crystallization, melting and glass transition. Heat capacity, Thermal expansion, Thermal conductivity. Thermal stresses, Electrical properties.