



## Name of the technology:An FPGA based General-purpose Lock-in Amplifier and PID Controller

**Introduction:** Active stabilization of any electronic signal requires accurate detection of the set-point. For this, the required electronic hardware are frequency generator for modulating the input signal, phase-sensitive *lock-in* for detection of the set point and a Proportional-Integral-Differential(PID) servo loop for dynamic correction of the input to keep it stabilized. Using the advanced digital electronics, all these three modules have been software implemented and that are embedded in a single Field Programmable Gate Array (FPGA) IC.



Figure 1: Front panel of the instrument that contains all the input/output (I/O) ports as indicated by 1-17. Readiness level of the Technology:

| Idea | Concept    | <b>Proof of</b> | Prototype | Lab        | Technology  | Technology    | Technology | Market |
|------|------------|-----------------|-----------|------------|-------------|---------------|------------|--------|
|      | Definition | Concept         |           | Validation | Development | Demonstration | Integrated | Launch |
|      |            |                 |           |            |             |               |            |        |

**Summary of the technology:**We have designed, fabricated and tested a new compact all-in-one instrument that compriseof a frequency generator, *lock-in* detector and PID controller, as shown in Fig. 1, and its specifications are given in Table I. Salient features of the developed instrument are: (a) **Compact** – size is reduced compared to total size offrequency generator, lock-in and PID since all of them are implemented in a single FPGA, (b) **Computer control** – the instrument can be fully operated from a remote PC via a user-friendly graphical user interface, (c) **Low noise** – no noise pick up due to digital signal processing,(d) Architectural freedom – easily configurable and re-configurable without any hassle of soldering, and (e) **Cost effective** –off-the-shelve componentshence the bill of material cost is very low.

## Notable users:

Industries (communication, aviation, driver less transportation, signalling system, power distribution, antitheft management*etc.*), maintenance system (stabilization of temperature, humidity, pressure, pH level,





vibration, laser parameter*etc.*), medical instruments (ECG, EEG, USG*etc.*), strategic sectors (secure communication, synchronization*etc.*), universities and research labs (material characterization, controlling experimental parameters and environment*etc.*) have wide applications of the developed instrument.

| Parameters                             | Frequency Generator      | Lock-in Amplifier         | PID                      |
|----------------------------------------|--------------------------|---------------------------|--------------------------|
| Damage Threshold                       | ± 6 V                    | ± 6 V                     | ± 6 V                    |
| Resolution (I/O)                       | 12 bit (I/O), 16 bit (O) | 12 bit (I/O), 16 bit (O)  | 12 bit (I/O), 16 bit (O) |
| Max Output Amplitude                   | 3.3 V and ± 5 V          | 3.3 V and ± 5 V           | 3.3 V and ± 5 V          |
| Roll Off(4 <sup>th</sup> order filter) | NA                       | 6 dB/Octave, 12 dB/Octave | NA                       |
| Phase Resolution                       | NA                       | 0.02 deg                  | NA                       |
| Noise @ 10 kHz                         | 26 nV Hz <sup>-1/2</sup> | 26 nV Hz <sup>-1/2</sup>  | 26 nV Hz <sup>-1/2</sup> |
| Modulation Frequency                   | DC to 100 kHz            | DC to 100 kHz             | NA                       |
| Modulation Type                        | Square,Sinusoidal,       | Square and Sinusoidal     | NA                       |
|                                        | Triangle, Sawtooth       |                           |                          |
| Bandwidth                              | 100 kHz                  | 100 kHz                   | 100 kHz                  |
| Signal Latency                         | NA                       | 5.7(1) μs                 | 5.7(1) μs                |
| PI corner Frequency                    | NA                       | NA                        | 10 kHz                   |
| $K_P$ , $K_I$ and $K_D$ Gain           | NA                       | NA                        | up to 60 dB              |

| Table I: Specifications of the Instrumen |
|------------------------------------------|
|------------------------------------------|

Related Patents: Patent No: Know-how, Country: Not applicable, Publication Date: Not applicable; Grant Date: Nil; Year of Introduction: 2018

**Broad Area/Category:** Electronics & Instrumentation